A Unified Theory of Neuro-MRI Data Shows Scale-Free Nature of Connectivity Modes

Author:

Galinsky Vitaly L.1,Frank Lawrence R.2

Affiliation:

1. Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92093-0854, U.S.A., and Electrical and Computer Engineering Department, University of California at San Diego, La Jolla, CA 92093-0407, U.S.A.

2. Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92093-0854, U.S.A.; Department of Radiology, University of California at San Diego, La Jolla, CA 92093-0854, U.S.A.; and VA San Diego Healthcare System, San Diego, CA 92161, U.S.A.

Abstract

A primary goal of many neuroimaging studies that use magnetic resonance imaging (MRI) is to deduce the structure-function relationships in the human brain using data from the three major neuro-MRI modalities: high-resolution anatomical, diffusion tensor imaging, and functional MRI. To date, the general procedure for analyzing these data is to combine the results derived independently from each of these modalities. In this article, we develop a new theoretical and computational approach for combining these different MRI modalities into a powerful and versatile framework that combines our recently developed methods for morphological shape analysis and segmentation, simultaneous local diffusion estimation and global tractography, and nonlinear and nongaussian spatial-temporal activation pattern classification and ranking, as well as our fast and accurate approach for nonlinear registration between modalities. This joint analysis method is capable of extracting new levels of information that is not achievable from any of those single modalities alone. A theoretical probabilistic framework based on a reformulation of prior information and available interdependencies between modalities through a joint coupling matrix and an efficient computational implementation allows construction of quantitative functional, structural, and effective brain connectivity modes and parcellation. This new method provides an overall increase of resolution, accuracy, level of detail, and information content and has the potential to be instrumental in the clinical adaptation of neuro-MRI modalities, which, when jointly analyzed, provide a more comprehensive view of a subject’s structure-function relations, while the current standard, wherein single-modality methods are analyzed separately, leaves a critical gap in an integrated view of a subject’s neuorphysiological state. As one example of this increased sensitivity, we demonstrate that the jointly estimated structural and functional dependencies of mode power follow the same power law decay with the same exponent.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3