Tangent Bundle Curve Completion with Locally Connected Parallel Networks

Author:

Ben-Yosef Guy1,Ben-Shahar Ohad1

Affiliation:

1. Computer Science Department and Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva 84105, Israel

Abstract

We propose a theory for cortical representation and computation of visually completed curves that are generated by the visual system to fill in missing visual information (e.g., due to occlusions). Recent computational theories and physiological evidence suggest that although such curves do not correspond to explicit image evidence along their length, their construction emerges from corresponding activation patterns of orientation-selective cells in the primary visual cortex. Previous theoretical work modeled these patterns as least energetic 3D curves in the mathematical continuous space [Formula: see text], which abstracts the mammalian striate cortex. Here we discuss the biological plausibility of this theory and present a neural architecture that implements it with locally connected parallel networks. Part of this contribution is also a first attempt to bridge the physiological literature on curve completion with the shape problem and a shape theory. We present completion simulations of our model in natural and synthetic scenes and discuss various observations and predictions that emerge from this theory in the context of curve completion.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Concept of Symmetry and the Theory of Perception;Frontiers in Computational Neuroscience;2021-08-23

2. Multi-inducer grouping for curve completion: Perceptual and computational exploration;Journal of Vision;2017-08-16

3. Cortical Networks of Visual Recognition;Biologically Inspired Computer Vision;2015-08-21

4. Contextual Diffusion Image Post-processing Aids Clinical Applications;Visualization and Processing of Higher Order Descriptors for Multi-Valued Data;2015

5. Tangent Bundle Elastica and Computer Vision;IEEE Transactions on Pattern Analysis and Machine Intelligence;2015-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3