Unsupervised 2D Dimensionality Reduction with Adaptive Structure Learning

Author:

Zhao Xiaowei1,Nie Feiping2,Wang Sen3,Guo Jun1,Xu Pengfei1,Chen Xiaojiang1

Affiliation:

1. School of Information Science and Technology, Northwest University, Xian 71027, China

2. Center for Optical Imagery Analysis and Learning, Northwestern Polytechnical University, Xian 710072, China

3. School of Information and Communication Technology, Griffith University, Southport, 4222, Australia

Abstract

In recent years, unsupervised two-dimensional (2D) dimensionality reduction methods for unlabeled large-scale data have made progress. However, performance of these degrades when the learning of similarity matrix is at the beginning of the dimensionality reduction process. A similarity matrix is used to reveal the underlying geometry structure of data in unsupervised dimensionality reduction methods. Because of noise data, it is difficult to learn the optimal similarity matrix. In this letter, we propose a new dimensionality reduction model for 2D image matrices: unsupervised 2D dimensionality reduction with adaptive structure learning (DRASL). Instead of using a predetermined similarity matrix to characterize the underlying geometry structure of the original 2D image space, our proposed approach involves the learning of a similarity matrix in the procedure of dimensionality reduction. To realize a desirable neighbors assignment after dimensionality reduction, we add a constraint to our model such that there are exact [Formula: see text] connected components in the final subspace. To accomplish these goals, we propose a unified objective function to integrate dimensionality reduction, the learning of the similarity matrix, and the adaptive learning of neighbors assignment into it. An iterative optimization algorithm is proposed to solve the objective function. We compare the proposed method with several 2D unsupervised dimensionality methods. K-means is used to evaluate the clustering performance. We conduct extensive experiments on Coil20, AT&T, FERET, USPS, and Yale data sets to verify the effectiveness of our proposed method.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive dual graph regularization for clustered multi-task learning;Neurocomputing;2024-03

2. Nonnegative Preserving Projection for Dimensionality Reduction;2023 IEEE 6th International Conference on Pattern Recognition and Artificial Intelligence (PRAI);2023-08-18

3. Adaptive Manifold Graph representation for Two-Dimensional Discriminant Projection;Knowledge-Based Systems;2023-04

4. Robust Dimensionality Reduction via Low-rank Laplacian Graph Learning;ACM Transactions on Intelligent Systems and Technology;2023-04

5. Fast Locality Discriminant Analysis With Adaptive Manifold Embedding;IEEE Transactions on Pattern Analysis and Machine Intelligence;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3