Multiview Feature Analysis via Structured Sparsity and Shared Subspace Discovery

Author:

Chang Yan-Shuo1,Nie Feiping2,Wang Ming-Yu3

Affiliation:

1. School of Computer Science and Technology, Xidian University, Software Park, and Institute for Silk Road Research, Xi'an 71027, China

2. OPTIMA, Northwestern Polytechnical University, Xi'an 71027, China

3. School of Computer Science and Technology, Xidian University and Software Park, Xi'an 71027, China

Abstract

Since combining features from heterogeneous data sources can significantly boost classification performance in many applications, it has attracted much research attention over the past few years. Most of the existing multiview feature analysis approaches separately learn features in each view, ignoring knowledge shared by multiple views. Different views of features may have some intrinsic correlations that might be beneficial to feature learning. Therefore, it is assumed that multiviews share subspaces from which common knowledge can be discovered. In this letter, we propose a new multiview feature learning algorithm, aiming to exploit common features shared by different views. To achieve this goal, we propose a feature learning algorithm in a batch mode, by which the correlations among different views are taken into account. Multiple transformation matrices for different views are simultaneously learned in a joint framework. In this way, our algorithm can exploit potential correlations among views as supplementary information that further improves the performance result. Since the proposed objective function is nonsmooth and difficult to solve directly, we propose an iterative algorithm for effective optimization. Extensive experiments have been conducted on a number of real-world data sets. Experimental results demonstrate superior performance in terms of classification against all the compared approaches. Also, the convergence guarantee has been validated in the experiment.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3