Theoretical and Experimental Analyses of Tensor-Based Regression and Classification

Author:

Wimalawarne Kishan1,Tomioka Ryota2,Sugiyama Masashi3

Affiliation:

1. Department of Computer Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan

2. Toyota Technological Institute at Chicago, Chicago, IL 60637, U.S.A.

3. Department of Complexity Science and Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

We theoretically and experimentally investigate tensor-based regression and classification. Our focus is regularization with various tensor norms, including the overlapped trace norm, the latent trace norm, and the scaled latent trace norm. We first give dual optimization methods using the alternating direction method of multipliers, which is computationally efficient when the number of training samples is moderate. We then theoretically derive an excess risk bound for each tensor norm and clarify their behavior. Finally, we perform extensive experiments using simulated and real data and demonstrate the superiority of tensor-based learning methods over vector- and matrix-based learning methods.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A low-rank support tensor machine for multi-classification;Information Sciences;2025-01

2. Multiway Sparse Distance Weighted Discrimination;Journal of Computational and Graphical Statistics;2022-08-30

3. An Effective Tensor Regression with Latent Sparse Regularization;Journal of Data Science;2022

4. Tensor Regression;Tensor Computation for Data Analysis;2021-05-03

5. Multitask Feature Learning Meets Robust Tensor Decomposition for EEG Classification;IEEE Transactions on Cybernetics;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3