LM-CMA: An Alternative to L-BFGS for Large-Scale Black Box Optimization

Author:

Loshchilov Ilya1

Affiliation:

1. Laboratory of Intelligent Systems (LIS), École Polytechnique Fédéral de Lausanne (EPFL), Lausanne, Switzerland

Abstract

Limited-memory BFGS (L-BFGS; Liu and Nocedal, 1989 ) is often considered to be the method of choice for continuous optimization when first- or second-order information is available. However, the use of L-BFGS can be complicated in a black box scenario where gradient information is not available and therefore should be numerically estimated. The accuracy of this estimation, obtained by finite difference methods, is often problem-dependent and may lead to premature convergence of the algorithm. This article demonstrates an alternative to L-BFGS, the limited memory covariance matrix adaptation evolution strategy (LM-CMA) proposed by Loshchilov ( 2014 ). LM-CMA is a stochastic derivative-free algorithm for numerical optimization of nonlinear, nonconvex optimization problems. Inspired by L-BFGS, LM-CMA samples candidate solutions according to a covariance matrix reproduced from m direction vectors selected during the optimization process. The decomposition of the covariance matrix into Cholesky factors allows reducing the memory complexity to [Formula: see text], where n is the number of decision variables. The time complexity of sampling one candidate solution is also [Formula: see text] but scales as only about 25 scalar-vector multiplications in practice. The algorithm has an important property of invariance with respect to strictly increasing transformations of the objective function; such transformations do not compromise its ability to approach the optimum. LM-CMA outperforms the original CMA-ES and its large-scale versions on nonseparable ill-conditioned problems with a factor increasing with problem dimension. Invariance properties of the algorithm do not prevent it from demonstrating a comparable performance to L-BFGS on nontrivial large-scale smooth and nonsmooth optimization problems.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3