Dynastic Potential Crossover Operator

Author:

Chicano Francisco1,Ochoa Gabriela2,Whitley L. Darrell3,Tinós Renato4

Affiliation:

1. ITIS Software, University of Malaga, Spain chicano@lcc.uma.es

2. University of Stirling, UK gabriela.ochoa@cs.stir.ac.uk

3. Colorado State University, USA whitley@cs.colostate.edu

4. University of Sao Paulo, Brazil rtinos@ffclrp.usp.br

Abstract

Abstract An optimal recombination operator for two parent solutions provides the best solution among those that take the value for each variable from one of the parents (gene transmission property). If the solutions are bit strings, the offspring of an optimal recombination operator is optimal in the smallest hyperplane containing the two parent solutions. Exploring this hyperplane is computationally costly, in general, requiring exponential time in the worst case. However, when the variable interaction graph of the objective function is sparse, exploration can be done in polynomial time. In this paper, we present a recombination operator, called Dynastic Potential Crossover (DPX), that runs in polynomial time and behaves like an optimal recombination operator for low-epistasis combinatorial problems. We compare this operator, both theoretically and experimentally, with traditional crossover operators, like uniform crossover and network crossover, and with two recently defined efficient recombination operators: partition crossover and articulation points partition crossover. The empirical comparison uses NKQ Landscapes and MAX-SAT instances. DPX outperforms the other crossover operators in terms of quality of the offspring and provides better results included in a trajectory and a population-based metaheuristic, but it requires more time and memory to compute the offspring.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large-scale and cooperative graybox parallel optimization on the supercomputer Fugaku;Journal of Parallel and Distributed Computing;2024-09

2. SFGA-CPA: A Novel Screening Correlation Power Analysis Framework Based on Genetic Algorithm;Computers, Materials & Continua;2024

3. Response to comments on “Jaws 30”;Genetic Programming and Evolvable Machines;2023-11-22

4. Genetic Algorithm with Linkage Learning;Proceedings of the Genetic and Evolutionary Computation Conference;2023-07-12

5. Iterated local search with perturbation based on variables interaction for pseudo-boolean optimization;Proceedings of the Genetic and Evolutionary Computation Conference;2022-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3