On the Runtime Analysis of the Clearing Diversity-Preserving Mechanism

Author:

Osuna Edgar Covantes1,Sudholt Dirk1

Affiliation:

1. Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, United Kingdom

Abstract

Clearing is a niching method inspired by the principle of assigning the available resources among a niche to a single individual. The clearing procedure supplies these resources only to the best individual of each niche: the winner. So far, its analysis has been focused on experimental approaches that have shown that clearing is a powerful diversity-preserving mechanism. Using rigorous runtime analysis to explain how and why it is a powerful method, we prove that a mutation-based evolutionary algorithm with a large enough population size, and a phenotypic distance function always succeeds in optimising all functions of unitation for small niches in polynomial time, while a genotypic distance function requires exponential time. Finally, we prove that with phenotypic and genotypic distances, clearing is able to find both optima for [Formula: see text] and several general classes of bimodal functions in polynomial expected time. We use empirical analysis to highlight some of the characteristics that makes it a useful mechanism and to support the theoretical results.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. History-Guided Hill Exploration for Evolutionary Computation;IEEE Transactions on Evolutionary Computation;2023-12

2. Theory and Practice of Population Diversity in Evolutionary Computation;Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

3. Analysing Equilibrium States for Population Diversity;2023

4. Theory and practice of population diversity in evolutionary computation;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2022-07-09

5. When Hillclimbers Beat Genetic Algorithms in Multimodal Optimization;Evolutionary Computation;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3