EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Author:

De Prisco R.1,Zaccagnino G.1,Zaccagnino R.1

Affiliation:

1. Dipartimento di Informatica, University of Salerno, Fisciano (SA), 84084, Italy

Abstract

Evolutionary algorithms mimic evolutionary behaviors in order to solve problems. They have been successfully applied in many areas and appear to have a special relationship with creative problems; such a relationship, over the last two decades, has resulted in a long list of applications, including several in the field of music. In this article, we provide an evolutionary algorithm able to compose music. More specifically we consider the following 4-voice harmonization problem: one of the 4 voices (which are bass, tenor, alto, and soprano) is given as input and the composer has to write the other 3 voices in order to have a complete 4-voice piece of music with a 4-note chord for each input note. Solving such a problem means finding appropriate chords to use for each input note and also finding a placement of the notes within each chord so that melodic concerns are addressed. Such a problem is known as the unfigured harmonization problem. The proposed algorithm for the unfigured harmonization problem, named EvoComposer, uses a novel representation of the solutions in terms of chromosomes (that allows to handle both harmonic and nonharmonic tones), specialized operators (that exploit musical information to improve the quality of the produced individuals), and a novel hybrid multiobjective evaluation function (based on an original statistical analysis of a large corpus of Bach's music). Moreover EvoComposer is the first evolutionary algorithm for this specific problem. EvoComposer is a multiobjective evolutionary algorithm, based on the well-known NSGA-II strategy, and takes into consideration two objectives: the harmonic objective, that is finding appropriate chords, and the melodic objective, that is finding appropriate melodic lines. The composing process is totally automatic, without any human intervention. We also provide an evaluation study showing that EvoComposer outperforms other metaheuristics by producing better solutions in terms of both well-known measures of performance, such as hypervolume, [Formula: see text] index, coverage of two sets, and standard measures of music creativity. We conjecture that a similar approach can be useful also for similar musical problems.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3