Probabilistic Analysis of the (1+1)-Evolutionary Algorithm

Author:

Hwang Hsien-Kuei1,Panholzer Alois2,Rolin Nicolas3,Tsai Tsung-Hsi4,Chen Wei-Mei5

Affiliation:

1. Institute of Statistical Science & Institute of Information Science, Academia Sinica, Taipei 115, Taiwan

2. Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8-10/104, 1040 Wien, Austria

3. LIPN, Institut Galilée, Université Paris 13, 93430, Villetaneuse, France

4. Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan

5. Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan

Abstract

We give a detailed analysis of the optimization time of the [Formula: see text]-Evolutionary Algorithm under two simple fitness functions (OneMax and LeadingOnes). The problem has been approached in the evolutionary algorithm literature in various ways and with different degrees of rigor. Our asymptotic approximations for the mean and the variance represent the strongest of their kind. The approach we develop is based on an asymptotic resolution of the underlying recurrences and can also be extended to characterize the corresponding limiting distributions. While most of our approximations can be derived by simple heuristic calculations based on the idea of matched asymptotics, the rigorous justifications are challenging and require a delicate error analysis.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Do additional target points speed up evolutionary algorithms?;Theoretical Computer Science;2023-03

2. Large population sizes and crossover help in dynamic environments;Natural Computing;2022-08-11

3. Lower Bounds from Fitness Levels Made Easy;Algorithmica;2022-04-28

4. Precise Runtime Analysis for Plateau Functions;ACM Transactions on Evolutionary Learning and Optimization;2021-12-31

5. Tight Bounds on the Expected Runtime of a Standard Steady State Genetic Algorithm;Algorithmica;2021-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3