Robustness of Ant Colony Optimization to Noise

Author:

Friedrich Tobias1,Kötzing Timo1,Krejca Martin S.1,Sutton Andrew M.1

Affiliation:

1. Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Abstract

Recently, ant colony optimization (ACO) algorithms have proven to be efficient in uncertain environments, such as noisy or dynamically changing fitness functions. Most of these analyses have focused on combinatorial problems such as path finding. We rigorously analyze an ACO algorithm optimizing linear pseudo-Boolean functions under additive posterior noise. We study noise distributions whose tails decay exponentially fast, including the classical case of additive Gaussian noise. Without noise, the classical [Formula: see text] EA outperforms any ACO algorithm, with smaller [Formula: see text] being better; however, in the case of large noise, the [Formula: see text] EA fails, even for high values of [Formula: see text] (which are known to help against small noise). In this article, we show that ACO is able to deal with arbitrarily large noise in a graceful manner; that is, as long as the evaporation factor [Formula: see text] is small enough, dependent on the variance [Formula: see text] of the noise and the dimension n of the search space, optimization will be successful. We also briefly consider the case of prior noise and prove that ACO can also efficiently optimize linear functions under this noise model.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Already Moderate Population Sizes Provably Yield Strong Robustness to Noise;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

2. Self-adaptation Can Improve the Noise-tolerance of Evolutionary Algorithms;Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms;2023-08-30

3. A Robot Path Planning Method Based on Synergy Behavior of Cockroach Colony;The International Arab Journal of Information Technology;2023

4. More Precise Runtime Analyses of Non-elitist Evolutionary Algorithms in Uncertain Environments;Algorithmica;2022-10-02

5. General Univariate Estimation-of-Distribution Algorithms;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3