High-Dimensional Unbalanced Binary Classification by Genetic Programming with Multi-Criterion Fitness Evaluation and Selection

Author:

Pei Wenbin1,Xue Bing2,Shang Lin3,Zhang Mengjie4

Affiliation:

1. School of Engineering and Computer Science, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand Wenbin.Pei@ecs.vuw.ac.nz

2. School of Engineering and Computer Science, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand Bing.Xue@ecs.vuw.ac.nz

3. State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China Shanglin@nju.edu.cn

4. School of Engineering and Computer Science, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand Mengjie.Zhang@ecs.vuw.ac.nz

Abstract

Abstract High-dimensional unbalanced classification is challenging because of the joint effects of high dimensionality and class imbalance. Genetic programming (GP) has the potential benefits for use in high-dimensional classification due to its built-in capability to select informative features. However, once data are not evenly distributed, GP tends to develop biased classifiers which achieve a high accuracy on the majority class but a low accuracy on the minority class. Unfortunately, the minority class is often at least as important as the majority class. It is of importance to investigate how GP can be effectively utilized for high-dimensional unbalanced classification. In this article, to address the performance bias issue of GP, a new two-criterion fitness function is developed, which considers two criteria, that is, the approximation of area under the curve (AUC) and the classification clarity (i.e., how well a program can separate two classes). The obtained values on the two criteria are combined in pairs, instead of summing them together. Furthermore, this article designs a three-criterion tournament selection to effectively identify and select good programs to be used by genetic operators for generating offspring during the evolutionary learning process. The experimental results show that the proposed method achieves better classification performance than other compared methods.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3