An Analysis of the Influence of Noneffective Instructions in Linear Genetic Programming

Author:

Sotto Léo Françoso Dal Piccol1,Rothlauf Franz2,de Melo Vinícius Veloso3,Basgalupp Márcio P.4

Affiliation:

1. Fraunhofer SCAI, Sankt Augustin, Germany leo.francoso.dal.piccol.sotto@scai-extern.fraunhofer.de

2. Johannes Gutenberg University, Mainz, Germany rothlauf@uni-mainz.de

3. Wawanesa Insurance, Department of Data Analytics, Winnipeg, Manitoba, Canada vvdemelo@wawanesa.com

4. Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil basgalupp@unifesp.br

Abstract

Abstract Linear Genetic Programming (LGP) represents programs as sequences of instructions and has a Directed Acyclic Graph (DAG) dataflow. The results of instructions are stored in registers that can be used as arguments by other instructions. Instructions that are disconnected from the main part of the program are called noneffective instructions, or structural introns. They also appear in other DAG-based GP approaches like Cartesian Genetic Programming (CGP). This article studies four hypotheses on the role of structural introns: noneffective instructions (1) serve as evolutionary memory, where evolved information is stored and later used in search, (2) preserve population diversity, (3) allow neutral search, where structural introns increase the number of neutral mutations and improve performance, and (4) serve as genetic material to enable program growth. We study different variants of LGP controlling the influence of introns for symbolic regression, classification, and digital circuits problems. We find that there is (1) evolved information in the noneffective instructions that can be reactivated and that (2) structural introns can promote programs with higher effective diversity. However, both effects have no influence on LGP search performance. On the other hand, allowing mutations to not only be applied to effective but also to noneffective instructions (3) increases the rate of neutral mutations and (4) contributes to program growth by making use of the genetic material available as structural introns. This comes along with a significant increase of LGP performance, which makes structural introns important for LGP.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3