Emergent Solutions to High-Dimensional Multitask Reinforcement Learning

Author:

Kelly Stephen1,Heywood Malcolm I.1

Affiliation:

1. Department of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, NS, B3H 4R2, Canada

Abstract

Algorithms that learn through environmental interaction and delayed rewards, or reinforcement learning (RL), increasingly face the challenge of scaling to dynamic, high-dimensional, and partially observable environments. Significant attention is being paid to frameworks from deep learning, which scale to high-dimensional data by decomposing the task through multilayered neural networks. While effective, the representation is complex and computationally demanding. In this work, we propose a framework based on genetic programming which adaptively complexifies policies through interaction with the task. We make a direct comparison with several deep reinforcement learning frameworks in the challenging Atari video game environment as well as more traditional reinforcement learning frameworks based on a priori engineered features. Results indicate that the proposed approach matches the quality of deep learning while being a minimum of three orders of magnitude simpler with respect to model complexity. This results in real-time operation of the champion RL agent without recourse to specialized hardware support. Moreover, the approach is capable of evolving solutions to multiple game titles simultaneously with no additional computational cost. In this case, agent behaviours for an individual game as well as single agents capable of playing all games emerge from the same evolutionary run.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Reference34 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. W. B. Langdon “Jaws 30”;Genetic Programming and Evolvable Machines;2023-11-22

2. Evolutionary Ensemble Learning;Handbook of Evolutionary Machine Learning;2023-11-02

3. Evolutionary Computation and the Reinforcement Learning Problem;Handbook of Evolutionary Machine Learning;2023-11-02

4. Evolutionary Machine Learning: A Survey;ACM Computing Surveys;2022-11-30

5. Summit-assisted Evolutionary Multitasking;2022 IEEE Congress on Evolutionary Computation (CEC);2022-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3