Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem

Author:

Nallaperuma Samadhi1,Neumann Frank2,Sudholt Dirk1

Affiliation:

1. Algorithms, Department of Computer Science, The University of Sheffield, Sheffield, S1 4DP, United Kingdom

2. Optimisation and Logistics, School of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia

Abstract

Randomized search heuristics are frequently applied to NP-hard combinatorial optimization problems. The runtime analysis of randomized search heuristics has contributed tremendously to our theoretical understanding. Recently, randomized search heuristics have been examined regarding their achievable progress within a fixed-time budget. We follow this approach and present a fixed-budget analysis for an NP-hard combinatorial optimization problem. We consider the well-known Traveling Salesperson Problem (TSP) and analyze the fitness increase that randomized search heuristics are able to achieve within a given fixed-time budget. In particular, we analyze Manhattan and Euclidean TSP instances and Randomized Local Search (RLS), (1+1) EA and (1+[Formula: see text]) EA algorithms for the TSP in a smoothed complexity setting, and derive the lower bounds of the expected fitness gain for a specified number of generations.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary Computation Meets Graph Drawing: Runtime Analysis for Crossing Minimisation on Layered Graph Drawings;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

2. Experimental and Theoretical Analysis of Local Search Optimising OBDD Variable Orderings;Lecture Notes in Computer Science;2024

3. Runtime Analysis for Permutation-based Evolutionary Algorithms;Algorithmica;2023-07-26

4. A Gentle Introduction to Theory (for Non-Theoreticians);Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

5. Influence of Binomial Crossover on Approximation Error of Evolutionary Algorithms;Mathematics;2022-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3