Affiliation:
1. LRI, Université Paris-Sud, Université Paris-Saclay, Orsay, France
Abstract
The hypervolume subset selection problem (HSSP) aims at approximating a set of [Formula: see text] multidimensional points in [Formula: see text] with an optimal subset of a given size. The size [Formula: see text] of the subset is a parameter of the problem, and an approximation is considered best when it maximizes the hypervolume indicator. This problem has proved popular in recent years as a procedure for multiobjective evolutionary algorithms. Efficient algorithms are known for planar points ([Formula: see text]), but there are hardly any results on HSSP in larger dimensions ([Formula: see text]). So far, most algorithms in higher dimensions essentially enumerate all possible subsets to determine the optimal one, and most of the effort has been directed toward improving the efficiency of hypervolume computation. We propose efficient algorithms for the selection problem in dimension 3 when either [Formula: see text] or [Formula: see text] is small, and extend our techniques to arbitrary dimensions for [Formula: see text].
Subject
Computational Mathematics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献