A Tri-objective Method for Bi-objective Feature Selection in Classification

Author:

Jiao Ruwang1,Xue Bing2,Zhang Mengjie3

Affiliation:

1. School of Engineering and Computer Science, Victoria University of Wellington, Wellington, 6140, New Zealand ruwangjiao@gmail.com

2. School of Engineering and Computer Science, Victoria University of Wellington, Wellington, 6140, New Zealand bing.xue@ecs.vuw.ac.nz

3. School of Engineering and Computer Science, Victoria University of Wellington, Wellington, 6140, New Zealand mengjie.zhang@ecs.vuw.ac.nz

Abstract

Abstract Minimizing the number of selected features and maximizing the classification performance are two main objectives in feature selection, which can be formulated as a biobjective optimization problem. Due to the complex interactions between features, a solution (i.e., feature subset) with poor objective values does not mean that all the features it selects are useless, as some of them combined with other complementary features can greatly improve the classification performance. Thus, it is necessary to consider not only the performance of feature subsets in the objective space, but also their differences in the search space, to explore more promising feature combinations. To this end, this paper proposes a tri-objective method for bi-objective feature selection in classification, which solves a bi-objective feature selection problem as a triobjective problem by considering the diversity (differences) between feature subsets in the search space as the third objective. The selection based on the converted triobjective method can maintain a balance between minimizing the number of selected features, maximizing the classification performance, and exploring more promising feature subsets. Furthermore, a novel initialization strategy and an offspring reproduction operator are proposed to promote the diversity of feature subsets in the objective space and improve the search ability, respectively. The proposed algorithm is compared with five multi-objective-based feature selection methods, six typical feature selection methods, and two peer methods with diversity as a helper objective. Experimental results on 20 real-world classification datasets suggest that the proposed method outperforms the compared methods in most scenarios.

Publisher

MIT Press

Subject

Computational Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3