Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

Author:

Pawlak Tomasz P.1,Krawiec Krzysztof1

Affiliation:

1. Institute of Computing Science, Poznan University of Technology, Poznań, Poland

Abstract

Program semantics is a promising recent research thread in Genetic Programming (GP). Over a dozen semantic-aware search, selection, and initialization operators for GP have been proposed to date. Some of these operators are designed to exploit the geometric properties of semantic space, while others focus on making offspring effective, that is, semantically different from their parents. Only a small fraction of previous works aimed at addressing both of these features simultaneously. In this article, we propose a suite of competent operators that combine effectiveness with geometry for population initialization, mate selection, mutation, and crossover. We present a theoretical rationale behind these operators and compare them experimentally to operators known from literature on symbolic regression and Boolean function synthesis benchmarks. We analyze each operator in isolation as well as verify how they fare together in an evolutionary run, concluding that the competent operators are superior on a wide range of performance indicators, including best-of-run fitness, test-set fitness, and program size.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An ensemble learning interpretation of geometric semantic genetic programming;Genetic Programming and Evolvable Machines;2024-03-11

2. SLIM_GSGP: The Non-bloating Geometric Semantic Genetic Programming;Lecture Notes in Computer Science;2024

3. Semantic Cluster Operator for Symbolic Regression and Its Applications;Advances in Engineering Software;2022-10

4. Analysis of neutral rewrite operator effects on arithmetic domain;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2022-07-09

5. Semantic Linear Genetic Programming for Symbolic Regression;IEEE Transactions on Cybernetics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3