Hyperplane-Approximation-Based Method for Many-Objective Optimization Problems with Redundant Objectives

Author:

Li Yifan1,Liu Hai-Lin1,Goodman E. D.2

Affiliation:

1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou, 510520, China

2. BEACON Center for the Study of Evolution in Action (NSF DBI-0939454), Michigan State University, East Lansing, MI 48824, USA

Abstract

For a many-objective optimization problem with redundant objectives, we propose two novel objective reduction algorithms for linearly and, nonlinearly degenerate Pareto fronts. They are called LHA and NLHA respectively. The main idea of the proposed algorithms is to use a hyperplane with non-negative sparse coefficients to roughly approximate the structure of the PF. This approach is quite different from the previous objective reduction algorithms that are based on correlation or dominance structure. Especially in NLHA, in order to reduce the approximation error, we transform a nonlinearly degenerate Pareto front into a nearly linearly degenerate Pareto front via a power transformation. In addition, an objective reduction framework integrating a magnitude adjustment mechanism and a performance metric [Formula: see text] are also proposed here. Finally, to demonstrate the performance of the proposed algorithms, comparative experiments are done with two correlation-based algorithms, LPCA and NLMVUPCA, and with two dominance-structure-based algorithms, PCSEA and greedy [Formula: see text]MOSS, on three benchmark problems: DTLZ5(I,M), MAOP(I,M), and WFG3(I,M). Experimental results show that the proposed algorithms are more effective.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3