odNEAT: An Algorithm for Decentralised Online Evolution of Robotic Controllers

Author:

Silva Fernando1,Urbano Paulo2,Correia Luís2,Christensen Anders Lyhne3

Affiliation:

1. Bio-inspired Computation and Intelligent Machines Lab, 1649-026 Lisboa, Portugal Instituto de Telecomunicações, 1049-001 Lisboa, Portugal; BioISI, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal

2. BioISI, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal

3. Bio-inspired Computation and Intelligent Machines Lab, 1649-026 Lisboa, Portugal Instituto de Telecomunicações, 1049-001 Lisboa, Portugal; Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisboa, Portugal

Abstract

Online evolution gives robots the capacity to learn new tasks and to adapt to changing environmental conditions during task execution. Previous approaches to online evolution of neural controllers are typically limited to the optimisation of weights in networks with a prespecified, fixed topology. In this article, we propose a novel approach to online learning in groups of autonomous robots called odNEAT. odNEAT is a distributed and decentralised neuroevolution algorithm that evolves both weights and network topology. We demonstrate odNEAT in three multirobot tasks: aggregation, integrated navigation and obstacle avoidance, and phototaxis. Results show that odNEAT approximates the performance of rtNEAT, an efficient centralised method, and outperforms IM-([Formula: see text]), a decentralised neuroevolution algorithm. Compared with rtNEAT and IM-([Formula: see text]), odNEAT’s evolutionary dynamics lead to the synthesis of less complex neural controllers with superior generalisation capabilities. We show that robots executing odNEAT can display a high degree of fault tolerance as they are able to adapt and learn new behaviours in the presence of faults. We conclude with a series of ablation studies to analyse the impact of each algorithmic component on performance.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Body and Brain Quality-Diversity in Robot Swarms;ACM Transactions on Evolutionary Learning and Optimization;2024-05-10

2. Recent trends in robot learning and evolution for swarm robotics;Frontiers in Robotics and AI;2023-04-24

3. Evolving Aggregation Behaviors in Swarms from an Evolutionary Algorithms Point of View;Applications of Artificial Intelligence and Neural Systems to Data Science;2023

4. Addressing tactic volatility in self-adaptive systems using evolved recurrent neural networks and uncertainty reduction tactics;Proceedings of the Genetic and Evolutionary Computation Conference;2022-07-08

5. Recombination and Novelty in Neuroevolution: A Visual Analysis;SN Computer Science;2022-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3