General Upper Bounds on the Runtime of Parallel Evolutionary Algorithms*

Author:

Lässig Jörg1,Sudholt Dirk2

Affiliation:

1. Department of Computer Science, University of Applied Sciences Zittau/Görlitz, Germany

2. Department of Computer Science, University of Sheffield, UK

Abstract

We present a general method for analyzing the runtime of parallel evolutionary algorithms with spatially structured populations. Based on the fitness-level method, it yields upper bounds on the expected parallel runtime. This allows for a rigorous estimate of the speedup gained by parallelization. Tailored results are given for common migration topologies: ring graphs, torus graphs, hypercubes, and the complete graph. Example applications for pseudo-Boolean optimization show that our method is easy to apply and that it gives powerful results. In our examples the performance guarantees improve with the density of the topology. Surprisingly, even sparse topologies such as ring graphs lead to a significant speedup for many functions while not increasing the total number of function evaluations by more than a constant factor. We also identify which number of processors lead to the best guaranteed speedups, thus giving hints on how to parameterize parallel evolutionary algorithms.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fourier Analysis Meets Runtime Analysis: Precise Runtimes on Plateaus;Algorithmica;2024-05-10

2. Analyzing the Expected Hitting Time of Evolutionary Computation-Based Neural Architecture Search Algorithms;IEEE Transactions on Emerging Topics in Computational Intelligence;2024

3. Level-Based Theorems for Runtime Analysis of Multi-objective Evolutionary Algorithms;Lecture Notes in Computer Science;2024

4. The Influence of Noise on Multi-Parent Crossover for an Island Model Genetic Algorithm;ACM Transactions on Evolutionary Learning and Optimization;2023-11-09

5. Fourier Analysis Meets Runtime Analysis: Precise Runtimes on Plateaus;Proceedings of the Genetic and Evolutionary Computation Conference;2023-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3