Multioperator Teleoperation of Multirobot Systems with Time Delay: Part I—Aids for Collision-Free Control

Author:

Chong Nak Young1,Kawabata Shun'ichi2,Ohba Kohtaro3,Kotoku Tetsuo3,Komoriya Kiyoshi3,Takase Kunikatsu4,Tanie Kazuo3

Affiliation:

1. Intelligent Systems Institute, The National Institute of Advanced, Industrial Science and Technology, AIST Tsukuba East, 1-2-1 Namiki, Tsukuba, Japan 305-8564,

2. Display Devices and Components Company, Toshiba Corp., Saitama, Japan 366-8510

3. Intelligent Systems Institute, AIST Tsukuba, Japan 305-8564

4. The University of Electro-Communications, Tokyo, Japan 182-8585

Abstract

In this paper, various coordinated control schemes are explored in Multioperatormultirobot (MOMR) teleoperation through a communication network with time delay. Over the past decades, problems and several notable results have been reported mainly in the Single-Operator–Single-Robot (SOSR) teleoperation system. Recently, the need for cooperation has rapidly emerged in many possible applications such as plant maintenance, construction, and surgery, because multirobot cooperation would have a significant advantage over a single robot in such cases. Thus, there is a growing interest in the control of multirobot systems in remote teleoperation, too. However, the time delay over the network would pose a more difficult problem to MOMR teleoperation systems and seriously affect their performance. In this work, our recent efforts devoted to the coordinated control of the MOMR teleoperation is described. First, we build a virtual experimental test bed to investigate the cooperation between two telerobots in remote environments. Then, different coordinated control aids are proposed to cope with collisions arising from delayed visual feedback from the remote location. To verify the validity of the proposed schemes, we perform extensive simulations of various planar rearrangement tasks employing local and remote graphics simulators over an ethernet LAN subject to a simulated communication delay.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3