A Convenient Multicamera Self-Calibration for Virtual Environments

Author:

Svoboda Tomáš1,Martinec Daniel1,Pajdla Tomáš1

Affiliation:

1. Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic

Abstract

Virtual immersive environments or telepresence setups often consist of multiple cameras that have to be calibrated. We present a convenient method for doing this. The minimum is three cameras, but there is no upper limit. The method is fully automatic and a freely moving bright spot is the only calibration object. A set of virtual 3D points is made by waving the bright spot through the working volume. Its projections are found with subpixel precision and verified by a robust RANSAC analysis. The cameras do not have to see all points; only reasonable overlap between camera subgroups is necessary. Projective structures are computed via rank-4 factorization and the Euclidean stratification is done by imposing geometric constraints. This linear estimate initializes a postprocessing computation of nonlinear distortion, which is also fully automatic. We suggest a trick on how to use a very ordinary laser pointer as the calibration object. We show that it is possible to calibrate an immersive virtual environment with 16 cameras in less than 60 minutes reaching about 1/5 pixel reprojection error. The method has been successfully tested on numerous multicamera environments using varying numbers of cameras of varying quality.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 279 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3