Distributed Applications for Collaborative Three-Dimensional Workspaces

Author:

Schmalstieg Dieter1,Reitmayr Gerhard2,Hesina Gerd3

Affiliation:

1. Vienna University of Technology, Vienna, Austria, Gerd Hesina, VRVis Research Center, Vienna, Austria

2. Vienna University of Technology, Vienna, Austria, Gerd Hesina, VRVis Research Center, Vienna, Austria,

3. VRVis Research Center Vienna, Austria

Abstract

This paper focuses on the distributed architecture of the collaborative threedimensional user interface management system, Studierstube. The system allows multiple users to experience a shared 3D workspace populated by multiple applications using see-through head-mounted displays or other presentation media such as projection systems. Building large, ubiquitous, or mobile workspaces requires distribution of applications over several hosts in varying and dynamic configurations. The system design is based on a distributed shared scene graph that alleviates the application programmer from explicitly considering distribution and that avoids a separation of graphical and application data. The idea of unifying all system data in the scene graph is taken to its logical consequence by implementing application instances as nodes in the scene graph. Through the distributed shared scene graph mechanism, consistency of scene graph replicas and the contained application nodes is assured. Dynamic configuration management is based on application migration between participating hosts and a spatial model of locales allowing dynamic workgroup management. We describe a number of experimental workspaces that demonstrate the use of these configuration management techniques.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CIDER: Collaborative Interior Design in Extended Reality;Proceedings of the 15th Biannual Conference of the Italian SIGCHI Chapter;2023-09-20

2. Augmented reality agents for user interface adaptation;Computer Animation and Virtual Worlds;2008

3. Using Augmented Virtuality for Remote Collaboration;Presence: Teleoperators and Virtual Environments;2004-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3