Affiliation:
1. University of North Carolina at Wilmington
2. 3rdTech, Inc.
3. Göteborg University and University College of Borås, Sweden
4. University of North Carolina at Chapel Hill
Abstract
We designed, developed, deployed, and evaluated the Collaborative nanoManipulator (CnM), a distributed, collaborative virtual environment system supporting remote scientific collaboration between users of the nanoManipulator interface to atomic force microscopes. This paper describes the entire collaboration system, but focuses on the shared nanoManipulator (nM) application. To be readily accepted by users, the shared nM application had to have the same high level of interactivity as the single-user system and include all the functions of the single-user system. In addition the application had to support a user's ability to interleave working privately and working collaboratively. Based on our experience developing the CnM, we present: a method of analyzing applications to characterize the concurrency requirements for sharing data between collaborating sites, examples of data structures that support distributed collaboration and interleaved private and collaborative work, and guidelines for selecting appropriate synchronization and concurrency control schemes.
Subject
Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献