Tracing data: A survey investigating disciplinary differences in data citation

Author:

Gregory Kathleen12ORCID,Ninkov Anton3ORCID,Ripp Chantal4ORCID,Roblin Emma1ORCID,Peters Isabella5ORCID,Haustein Stefanie16ORCID

Affiliation:

1. School of Information Studies, Scholarly Communications Lab, University of Ottawa, Ottawa, Ontario, Canada

2. Faculty of Computer Science, Research Group Visualization and Data Analysis, University of Vienna, Vienna, Austria

3. École de bibliothéconomie et des sciences de l’information, Université de Montréal, Montréal, Québec, Canada

4. Scholarly Communications Lab, University of Ottawa, Ottawa, Ontario, Canada

5. ZBW Leibniz Information Center for Economics and Kiel University, Kiel, Germany

6. Observatoire des Sciences et des Technologies (OST), Centre Interuniversitaire de Recherche sur la Science et la Technologie (CIRST), Université du Québec à Montréal, Montréal, Québec, Canada

Abstract

Abstract Data citations, or citations in reference lists to data, are increasingly seen as an important means to trace data reuse and incentivize data sharing. Although disciplinary differences in data citation practices have been well documented via scientometric approaches, we do not yet know how representative these practices are within disciplines. Nor do we yet have insight into researchers’ motivations for citing—or not citing—data in their academic work. Here, we present the results of the largest known survey (n = 2,492) to explicitly investigate data citation practices, preferences, and motivations, using a representative sample of academic authors by discipline, as represented in the Web of Science (WoS). We present findings about researchers’ current practices and motivations for reusing and citing data and also examine their preferences for how they would like their own data to be cited. We conclude by discussing disciplinary patterns in two broad clusters, focusing on patterns in the social sciences and humanities, and consider the implications of our results for tracing and rewarding data sharing and reuse.

Funder

Alfred P. Sloan Foundation

Publisher

MIT Press

Subject

Library and Information Sciences,Cultural Studies,Numerical Analysis,Analysis

Reference86 articles.

1. Data set references;American Psychological Association,2022

2. 1,500 scientists lift the lid on reproducibility;Baker;Nature,2016

3. Best practice may not be enough: Variation in data citation using DOIs [Poster presentation];Banaeefar;Annual Meeting of the International Association for Social Science Information Service and Technology,2022

4. Measuring the value of research data: A citation analysis of oceanographic data sets;Belter;PLOS ONE,2014

5. Revisiting qualitative data reuse: A decade on;Bishop;SAGE Open,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3