Reproducible science of science at scale: pySciSci

Author:

Gates Alexander J.1ORCID,Barabási Albert-László23ORCID

Affiliation:

1. School of Data Science, University of Virginia, Charlottesville, VA

2. Network Science Institute, Northeastern University, Boston, MA

3. Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA

Abstract

Abstract Science of science (SciSci) is a growing field encompassing diverse interdisciplinary research programs that study the processes underlying science. The field has benefited greatly from access to massive digital databases containing the products of scientific discourse—including publications, journals, patents, books, conference proceedings, and grants. The subsequent proliferation of mathematical models and computational techniques for quantifying the dynamics of innovation and success in science has made it difficult to disentangle universal scientific processes from those dependent on specific databases, data-processing decisions, field practices, etc. Here we present pySciSci, a freely available and easily adaptable package for the analysis of large-scale bibliometric data. The pySciSci package standardizes access to many of the most common data sets in SciSci and provides efficient implementations of common and advanced analytical techniques.

Funder

Air Force Office of Scientific Research

Templeton Foundation

European Union’s Horizon

The Eric and Wendy Schmidt Fund for Strategic Innovation

NSF

Publisher

MIT Press

Subject

Library and Information Sciences,Cultural Studies,Numerical Analysis,Analysis

Reference60 articles.

1. Bibliometrix: An R-tool for comprehensive science mapping analysis;Aria;Journal of Informetrics,2017

2. Evolution of the social network of scientific collaborations;Barabási;Physica A: Statistical Mechanics and its Applications,2002

3. Fast unfolding of communities in large networks;Blondel;Journal of Statistical Mechanics: Theory and Experiment,2008

4. A principal component analysis of 39 scientific impact measures;Bollen;PLOS ONE,2009

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3