A supervised machine learning approach to trace doctorate recipients’ employment trajectories

Author:

Heinisch Dominik P.1ORCID,Koenig Johannes12ORCID,Otto Anne2ORCID

Affiliation:

1. University of Kassel, Institute of Economics and INCHER-Kassel (Germany)

2. Institute of Employment Research (IAB) Rhineland-Palatinate-Saarland (Germany)

Abstract

Only scarce information is available on doctorate recipients’ career outcomes ( BuWiN, 2013 ). With the current information base, graduate students cannot make an informed decision on whether to start a doctorate or not ( Benderly, 2018 ; Blank et al., 2017 ). However, administrative labor market data, which could provide the necessary information, are incomplete in this respect. In this paper, we describe the record linkage of two data sets to close this information gap: data on doctorate recipients collected in the catalog of the German National Library (DNB), and the German labor market biographies (IEB) from the German Institute of Employment Research. We use a machine learning-based methodology, which (a) improves the record linkage of data sets without unique identifiers, and (b) evaluates the quality of the record linkage. The machine learning algorithms are trained on a synthetic training and evaluation data set. In an exemplary analysis, we compare the evolution of the employment status of female and male doctorate recipients in Germany.

Publisher

MIT Press - Journals

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3