Evolutionary Algorithms for the Satisfiability Problem

Author:

Gottlieb Jens1,Marchiori Elena2,Rossi Claudio3

Affiliation:

1. SAP AG, Neurottstrasse 16, 69190 Walldorf, Germany

2. Department of Computer Science, Free University Amsterdam, de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

3. Department of Computer Science, Ca' Foscari University of Venice, Via Torino 155, 31072 Mestre, Italy

Abstract

Several evolutionary algorithms have been proposed for the satisfiability problem. We review the solution representations suggested in literature and choose the most promising one the bit string representation for further evaluation. An empirical comparison on commonly used benchmarks is presented for the most successful evolutionary algorithms and for WSAT, a prominent local search algorithm for the satisfi-ability problem. The key features of successful evolutionary algorithms are identified, thereby providing useful methodological guidelines for designing new heuristics. Our results indicate that evolutionary algorithms are competitive to WSAT.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A modified reverse-based analysis logic mining model with Weighted Random 2 Satisfiability logic in Discrete Hopfield Neural Network and multi-objective training of Modified Niched Genetic Algorithm;Expert Systems with Applications;2024-04

2. Is CC-(1+1) EA More Efficient than (1+1) EA on Separable and Inseparable Problems?;2023 IEEE Congress on Evolutionary Computation (CEC);2023-07-01

3. Byzantine-Fault-Tolerant Consensus via Reinforcement Learning for Permissioned Blockchain-Empowered V2X Network;IEEE Transactions on Intelligent Vehicles;2023-01

4. Portfolio Selection for SAT Instances;2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2022-10-09

5. Negative Learning Ant Colony Optimization for MaxSAT;International Journal of Computational Intelligence Systems;2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3