Network Random Keys—A Tree Representation Scheme for Genetic and Evolutionary Algorithms

Author:

Rothlauf Franz1,Goldberg David E.2,Heinzl Armin1

Affiliation:

1. Department of Information Systems, University of Bayreuth, University atsstr. 30, D-95440 Bayreuth, Germany

2. Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, 117 Transportation Building, 104 S. Mathews Ave. Urbana, IL 61801, USA

Abstract

When using genetic and evolutionary algorithms for network design, choosing a good representation scheme for the construction of the genotype is important for algorithm performance. One of the most common representation schemes for networks is the characteristic vector representation. However, with encoding trees, and using crossover and mutation, invalid individuals occur that are either under or overspecified. When constructing the offspring or repairing the invalid individuals that do not represent a tree, it is impossible to distinguish between the importance of the links that should be used. These problems can be overcome by transferring the concept of random keys from scheduling and ordering problems to the encoding of trees. This paper investigates the performance of a simple genetic algorithm (SGA) using network random keys (NetKeys) for the one-max tree and a real-world problem. The comparison between the network random keys and the characteristic vector encoding shows that despite the effects of stealth mutation, which favors the characteristic vector representation, selectorecombinative SGAs with NetKeys have some advantages for small and easy optimization problems. With more complex problems, SGAs with network random keys significantly outperform SGAs using characteristic vectors. This paper shows that random keys can be used for the encoding of trees, and that genetic algorithms using network random keys are able to solve complex tree problems much faster than when using the characteristic vector. Users should therefore be encouraged to use network random keys for the representation of trees.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3