Affiliation:
1. Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
2. Max-Planck-Institut für Strömungsforschung, D-37073 Goettingen, Germany
Abstract
Transmission across neocortical synapses depends on the frequency of presynaptic activity (Thomson & Deuchars, 1994). Interpyramidal synapses in layer V exhibit fast depression of synaptic transmission, while other types of synapses exhibit facilitation of transmission. To study the role of dynamic synapses in network computation, we propose a unified phenomenological model that allows computation of the postsynaptic current generated by both types of synapses when driven by an arbitrary pattern of action potential (AP) activity in a presynaptic population. Using this formalism, we analyze different regimes of synaptic transmission and demonstrate that dynamic synapses transmit different aspects of the presynaptic activity depending on the average presynaptic frequency. The model also allows for derivation of mean-field equations, which govern the activity of large, interconnected networks. We show that the dynamics of synaptic transmission results in complex sets of regular and irregular regimes of network activity.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
720 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献