On the Role of Biophysical Properties of Cortical Neurons in Binding and Segmentation of Visual Scenes

Author:

Verschure Paul F. M. J.1,König Peter2

Affiliation:

1. Institute of Neuroinformatics, ETH-UZ, 8057 Zürich, Switzerland; Salk Institute, La Jolla, CA 92037, U.S.A., and Neurosciences Institute, San Diego, CA 92121, U.S.A.

2. Institute of Neuroinformatics, ETH-UZ, 8057 Zürich, Switzerland, and Neurosciences Institute, San Diego, CA 92121, U.S.A.

Abstract

Neuroscience is progressing vigorously, and knowledge at different levels of description is rapidly accumulating. To establish relationships between results found at these different levels is one of the central challenges. In this simulation study, we demonstrate how microscopic cellular properties, taking the example of the action of modulatory substances onto the membrane leakage current, can provide the basis for the perceptual functions reflected in the macroscopic behavior of a cortical network. In the first part, the action of the modulatory system on cortical dynamics is investigated. First, it is demonstrated that the inclusion of these biophysical properties in a model of the primary visual cortex leads to the dynamic formation of synchronously active neuronal assemblies reflecting a context-dependent binding and segmentation of image components. Second, it is shown that the differential regulation of the leakage current can be used to bias the interactions of multiple cortical modules. This allows the flexible use of different feature domains for scene segmentation. Third, we demonstrate how, within the proposed architecture, the mapping of a moving stimulus onto the spatial dimension of the network results in an increased speed of synchronization. In the second part, we demonstrate how the differential regulation of neuromodulatory activity can be achieved in a self-consistent system. Three different mechanisms are described and investigated. This study thus demonstrates how a modulatory system, affecting the biophysical properties of single cells, can be used to achieve context-dependent processing at the system level.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3