Category Learning Through Multimodality Sensing

Author:

de Sa Virginia R.1,Ballard Dana H.2

Affiliation:

1. Sloan Center for Theoretical Neurobiology, University of California at San Francisco, San Francisco, CA 94143-0444, U.S.A.

2. Department of Computer Science, University of Rochester, Rochester, NY 14627-0226, U.S.A.

Abstract

Humans and other animals learn to form complex categories without receiving a target output, or teaching signal, with each input pattern. In contrast, most computer algorithms that emulate such performance assume the brain is provided with the correct output at the neuronal level or require grossly unphysiological methods of information propagation. Natural environments do not contain explicit labeling signals, but they do contain important information in the form of temporal correlations between sensations to different sensory modalities, and humans are affected by this correlational structure (Howells, 1944; McGurk & MacDonald, 1976; MacDonald & McGurk, 1978; Zellner & Kautz, 1990; Durgin & Proffitt, 1996). In this article we describe a simple, unsupervised neural network algorithm that also uses this natural structure. Using only the co-occurring patterns of lip motion and sound signals from a human speaker, the network learns separate visual and auditory speech classifiers that perform comparably to supervised networks.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised learning of mid-level visual representations;Current Opinion in Neurobiology;2024-02

2. Early Years: Creating Perceptual Space Where Music and Language Can Meet;Psychoanalytic Inquiry;2023-11-17

3. Keyword Localisation in Untranscribed Speech Using Visually Grounded Speech Models;IEEE Journal of Selected Topics in Signal Processing;2022-10

4. Lessons from infant learning for unsupervised machine learning;Nature Machine Intelligence;2022-06-22

5. MultiMAE: Multi-modal Multi-task Masked Autoencoders;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3