Statistically Efficient Estimation Using Population Coding

Author:

Pouget Alexandre1,Zhang Kechen2,Deneve Sophie1,Latham Peter E.3

Affiliation:

1. Georgetown Institute for Computational and Cognitive Sciences, Georgetown University, Washington, DC 20007-2197, U.S.A.

2. Computational Neurobiology Laboratory, Salk Institute, La Jolla, CA 92037, U.S.A.

3. Department of Neurobiology, University of California at Los Angeles, Los Angeles, CA 90095-1763, U.S.A.

Abstract

Coarse codes are widely used throughout the brain to encode sensory and motor variables. Methods designed to interpret these codes, such as population vector analysis, are either inefficient (the variance of the estimate is much larger than the smallest possible variance) or biologically implausible, like maximum likelihood. Moreover, these methods attempt to compute a scalar or vector estimate of the encoded variable. Neurons are faced with a similar estimation problem. They must read out the responses of the presynaptic neurons, but, by contrast, they typically encode the variable with a further population code rather than as a scalar. We show how a nonlinear recurrent network can be used to perform estimation in a near-optimal way while keeping the estimate in a coarse code format. This work suggests that lateral connections in the cortex may be involved in cleaning up uncorrelated noise among neurons representing similar variables.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 172 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3