Equivalence of a Sprouting-and-Retraction Model and Correlation-Based Plasticity Models of Neural Development

Author:

Miller Kenneth D.1

Affiliation:

1. Departments of Physiology and Otolaryngology and Neuroscience Graduate Program, W. M. Keck Center for Integrative Neuroscience, Sloan Center for Theoretical Neuro-biology at University of California, San Francisco, CA 94143-0444, U.S.A.

Abstract

A simple model of correlation-based synaptic plasticity via axonal sprouting and retraction (Elliott, Howarth, & Shadbolt, 1996a) is shown to be equivalent to the class of correlation-based models (Miller, Keller, & Stryker, 1989), although these were formulated in terms of weight modification of anatomically fixed synapses. Both models maximize the same measure of synaptic correlation, subject to certain constraints on connectivity. Thus, the analyses of the correlation-based models suffice to characterize the behavior of the sprouting-and-retraction model. More detailed models are needed for theoretical distinctions to be drawn between plasticity via sprouting and retraction, weight modification, or a combination. The model of Elliott et al. involves stochastic search through allowed weight patterns for those that improve correlations. That of Miller et alinstead follows dynamical equations that determine continuous changes of the weights that improve correlations. The identity of these two approaches is shown to depend on the use of subtractive constraint enforcement in the models of Miller et al. More generally, to model the idea that neural development acts to maximize some measure of correlation subject to a constraint on the summed synaptic weight, the constraint must be enforced subtractively in a dynamical model.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3