A Self-Organizing Neural Network Architecture for Navigation Using Optic Flow

Author:

Cameron Seth1,Grossberg Stephen1,Guenther Frank H.1

Affiliation:

1. Department of Cognitive and Neural Systems and Center for Adaptive Systems, Boston University, Boston, MA 02215, U.S.A.

Abstract

This article describes a self-organizing neural network architecture that transforms optic flow and eye position information into representations of heading, scene depth, and moving object locations. These representations are used to navigate reactively in simulations involving obstacle avoidance and pursuit of a moving target. The network's weights are trained during an action-perception cycle in which self-generated eye and body movements produce optic flow information, thus allowing the network to tune itself without requiring explicit knowledge of sensor geometry. The confounding effect of eye movement during translation is suppressed by learning the relationship between eye movement outflow commands and the optic flow signals that they induce. The remaining optic flow field is due to only observer translation and independent motion of objects in the scene. A self-organizing feature map categorizes normalized translational flow patterns, thereby creating a map of cells that code heading directions. Heading information is then recombined with translational flow patterns in two different ways to form maps of scene depth and moving object locations. Most of the learning processes take place concurrently and evolve through unsupervised learning. Mapping the learned heading representations onto heading labels or motor commands requires additional structure. Simulations of the network verify its performance using both noise-free and noisy optic flow information.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3