A Teleoperated Microsurgical Robot and Associated Virtual Environment for Eye Surgery

Author:

Hunter Ian W.1,Doukoglou Tilemachos D.1,Lafontaine Serge R.1,Charette Paul G.1,Jones Lynette A.2,Sagar Mark A.3,Mallinson Gordon D.3,Hunter Peter J.4

Affiliation:

1. Department of Biomedical Engineering, McGill University, Montreal, Canada.

2. School of Physical and Occupational Therapy, McGill University, Montreal, Canada.

3. Department of Mechanical Engineering, University of Auckland, Auckland, New Zealand.

4. Department of Engineering Science, University of Auckland, Auckland, New Zealand.

Abstract

We have developed a prototype teleoperated microsurgical robot (MSR-1) and associated virtual environment for eye surgery. Bidirectional pathways relay visual, auditory, and mechanical information between the MSR-1 master and slave. The surgeon wears a helmet (visual master) that is used to control the orientation of a stereo camera system (visual slave) observing the surgery. Images from the stereo camera system are relayed back to the helmet (or adjacent screen) where they are viewed by the surgeon. In each hand the surgeon holds a pseudotool (a shaft shaped like a microsurgical scalpel) that projects from the left and right limbs of a force reflecting interface (mechanical master). Movements of the left and right pseudotools cause corresponding movements (scaled down by 1 to 100 times) in the microsurgical tools held by the left and right limbs of the micromotion robot (mechanical slave) that performs the surgery. Forces exerted on the left and right limbs of the slave microsurgical robot via the microtools are reflected back (after being scaled up by 1 to 100 times) to the pseudotools and hence surgeon via actuators in the left and right limbs of the mechanical master. This system enables tissue cutting forces to be felt including those that would normally be imperceptible if they were transmitted directly to the surgeon's hands. The master and slave subsystems (visual, auditory, and mechanical) communicate through a computer system which serves to enhance and augment images, filter hand tremor, perform coordinate transformations, and perform safety checks. The computer system consists of master and slave computers that communicate via an optical fiber connection. As a result, the MSR-1 master and slave may be located at different sites, which permits remote robotic microsurgery to become a reality. MSR-1 is being used as an experimental testbed for studying the effects of feedforward and feedback delays on remote surgery and is used in research on enhancing the accuracy and dexterity of microsurgeons by creating mechanical and visual telepresence.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3