The Visual Display Transformation for Virtual Reality

Author:

Robinett Warren1,Holloway Richard2

Affiliation:

1. Virtual Reality Games Inc., 719 E. Rosemary St., Chapel Hill NC 27514.

2. Department of Computer Science, CB 3175, University of North Carolina, Chapel Hill, NC 27599-3 175.

Abstract

The visual display transformation for virtual reality (VR) systems is typically much more complex than the standard viewing transformation discussed in the literature for conventional computer graphics. The process can be represented as a series of transformations, some of which contain parameters that must match the physical configuration of the system hardware and the user's body. Because of the number and complexity of the transformations, a systematic approach and a thorough understanding of the mathematical models involved are essential. This paper presents a complete model for the visual display transformation for a VR system; that is, the series of transformations used to map points from object coordinates to screen coordinates. Virtual objects are typically defined in an object-centered coordinate system (CS), but must be displayed using the screen-centered CSs of the two screens of a head-mounted display (HMD). This particular algorithm for the VR display computation allows multiple users to independently change position, orientation, and scale within the virtual world, allows users to pick up and move virtual objects, uses the measurements from a head tracker to immerse the user in the virtual world, provides an adjustable eye separation for generating two stereoscopic images, uses the off-center perspective projection required by many HMDs, and compensates for the optical distortion introduced by the lenses in an HMD. The implementation of this framework as the core of the UNC VR software is described, and the values of the UNC display parameters are given. We also introduce the vector-quaternion-scalar (VQS) representation for transformations between 3D coordinate systems, which is specifically tailored to the needs of a VR system. The transformations and CSs presented comprise a complete framework for generating the computer-graphic imagery required in a typical VR system. The model presented here is deliberately abstract in order to be general purpose; thus, issues of system design and visual perception are not addressed. While the mathematical techniques involved are already well known, there are enough parameters and pitfalls that a detailed description of the entire process should be a useful tool for someone interested in implementing a VR system.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Relationship of Design Principles and The Types of Virtual Reality from Novice Designers' Perspective;2022 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON);2022-01-26

2. Derivation and simulation verification of the relationship between world coordinates and local coordinates under virtual reality engine;Virtual Reality;2019-08-10

3. Cooperation of Virtual Reality and Real Objects with HoloLens;Advances in Intelligent Systems and Computing;2019-04-24

4. Analyzing effects of geometric rendering parameters on size and distance estimation in on-axis stereographics;Proceedings of the ACM Symposium on Applied Perception;2012-08-03

5. From 2D Images to 3D Tangible Models: Autostereoscopic and Haptic Visualization of Martian Rocks in Virtual Environments;Presence: Teleoperators and Virtual Environments;2007-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3