Virtual Worlds as Fuzzy Cognitive Maps

Author:

Dickerson Julie A.1,Kosko Bart1

Affiliation:

1. Department of Electrical Engineering—Systems, Signal and Image Processing Institute, University of Southern California, Los Angeles, California 90089-2564.

Abstract

Fuzzy cognitive maps (FCM) can structure virtual worlds that change with time. An FCM links causal events, actors, values, goals, and trends in a fuzzy feedback dynamical system. An FCM lists the fuzzy rules or causal flow paths that relate events. It can guide actors in a virtual world as the actors move through a web of cause and effect and react to events and to other actors. Experts draw FCM causal pictures of the virtual world. They do not write down differential equations to change the virtual world. Complex FCMs can give virtual worlds with “new” or chaotic equilibrium behavior. Simple FCMs give virtual worlds with periodic behavior. They map input states to limit-cycle equilibria. An FCM limit cycle repeats a sequence of events or a chain of actions and responses. Limit cycles can control the steady-state rhythms and patterns in a virtual world. In nested FCMs each causal concept can control its own FCM or fuzzy function approximator. This gives levels of fuzzy systems that can choose goals and causal webs as well as move objects and guide actors in the webs. FCM matrices sum to give a combined FCM virtual world for any number of knowledge sources. Adaptive FCMs change their fuzzy causal web as causal patterns change and as actors act and experts state their causal knowledge. Neural learning laws change the causal rules and the limit cycles. Actors learn new patterns and reinforce old ones. In complex FCMs the user can choose the dynamical structure of the virtual world from a spectrum that ranges from mildly to wildly nonlinear. We use a simple but adaptive FCM to model an undersea virtual world of dolphins, fish, and sharks.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3