Frame-Semantic Parsing

Author:

Das Dipanjan1,Chen Desai2,Martins André F. T.34,Schneider Nathan5,Smith Noah A.5

Affiliation:

1. Google Inc.

2. Massachusetts Institute of Technology

3. Priberam Labs

4. Instituto de Telecomunicações

5. Carnegie Mellon University

Abstract

Frame semantics is a linguistic theory that has been instantiated for English in the FrameNet lexicon. We solve the problem of frame-semantic parsing using a two-stage statistical model that takes lexical targets (i.e., content words and phrases) in their sentential contexts and predicts frame-semantic structures. Given a target in context, the first stage disambiguates it to a semantic frame. This model uses latent variables and semi-supervised learning to improve frame disambiguation for targets unseen at training time. The second stage finds the target's locally expressed semantic arguments. At inference time, a fast exact dual decomposition algorithm collectively predicts all the arguments of a frame at once in order to respect declaratively stated linguistic constraints, resulting in qualitatively better structures than naïve local predictors. Both components are feature-based and discriminatively trained on a small set of annotated frame-semantic parses. On the SemEval 2007 benchmark data set, the approach, along with a heuristic identifier of frame-evoking targets, outperforms the prior state of the art by significant margins. Additionally, we present experiments on the much larger FrameNet 1.5 data set. We have released our frame-semantic parser as open-source software.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Reference100 articles.

1. SemEval'07 task 19

2. Video suggestion and discovery for youtube

3. Increasing Coverage of Syntactic Subcategorization Patterns in FrameNet Using Verbnet

4. Bejan, Cosmin A. 2009. Learning Event Structures From Text. Ph.D. thesis, The University of Texas at Dallas.

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3