Evaluative Language Beyond Bags of Words: Linguistic Insights and Computational Applications

Author:

Benamara Farah1,Taboada Maite2,Mathieu Yannick3

Affiliation:

1. IRIT-Université de Toulouse

2. Simon Fraser University

3. LLF-CNRS

Abstract

The study of evaluation, affect, and subjectivity is a multidisciplinary enterprise, including sociology, psychology, economics, linguistics, and computer science. A number of excellent computational linguistics and linguistic surveys of the field exist. Most surveys, however, do not bring the two disciplines together to show how methods from linguistics can benefit computational sentiment analysis systems. In this survey, we show how incorporating linguistic insights, discourse information, and other contextual phenomena, in combination with the statistical exploitation of data, can result in an improvement over approaches that take advantage of only one of these perspectives. We first provide a comprehensive introduction to evaluative language from both a linguistic and computational perspective. We then argue that the standard computational definition of the concept of evaluative language neglects the dynamic nature of evaluation, in which the interpretation of a given evaluation depends on linguistic and extra-linguistic contextual factors. We thus propose a dynamic definition that incorporates update functions. The update functions allow for different contextual aspects to be incorporated into the calculation of sentiment for evaluative words or expressions, and can be applied at all levels of discourse. We explore each level and highlight which linguistic aspects contribute to accurate extraction of sentiment. We end the review by outlining what we believe the future directions of sentiment analysis are, and the role that discourse and contextual information need to play.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Reference343 articles.

1. Sentiment analysis in multiple languages

2. Afantenos, Stergos, Nicholas Asher, Farah Benamara, Myriam Bras, Cécile Fabre, Mai Ho-Dac, Anne Le Draoulec, Philippe Muller, Marie-Paule Péry-Woodley, Laurent Prévot, Josette Rebeyrolles, Ludovic Tanguy, Marianne Vergez-Couret, and Laure Vieu. 2012. An empirical resource for discovering cognitive principles of discourse organisation: The ANNODIS corpus. In Proceedings of the Eighth International Conference on Language Resources and Evaluation, LREC 2012, pages 2727–2734, Istanbul.

3. Automatically classifying sentences in full-text biomedical articles into Introduction, Methods, Results and Discussion

4. Agarwal, Apoorv, Fadi Biadsy, and Kathleen R. McKeown. 2009. Contextual phrase-level polarity analysis using lexical affect scoring and syntactic n-grams. In Proceedings of the Conference of the European Chapter of the Association for Computational Linguistics, EACL 2009, pages 24–32, Athens.

5. Agarwal, Apoorv, Boyi Xie, Ilia Vovsha, Owen Rambow, and Rebecca Passonneau. 2011. Sentiment analysis of Twitter data. In Proceedings of the Workshop on Languages in Social Media, pages 30–38, Portland, OR.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3