Towards Automatic Error Analysis of Machine Translation Output

Author:

Popović Maja1,Ney Hermann1

Affiliation:

1. RWTH Aachen University

Abstract

Evaluation and error analysis of machine translation output are important but difficult tasks. In this article, we propose a framework for automatic error analysis and classification based on the identification of actual erroneous words using the algorithms for computation of Word Error Rate (WER) and Position-independent word Error Rate (PER), which is just a very first step towards development of automatic evaluation measures that provide more specific information of certain translation problems. The proposed approach enables the use of various types of linguistic knowledge in order to classify translation errors in many different ways. This work focuses on one possible set-up, namely, on five error categories: inflectional errors, errors due to wrong word order, missing words, extra words, and incorrect lexical choices. For each of the categories, we analyze the contribution of various POS classes. We compared the results of automatic error analysis with the results of human error analysis in order to investigate two possible applications: estimating the contribution of each error type in a given translation output in order to identify the main sources of errors for a given translation system, and comparing different translation outputs using the introduced error categories in order to obtain more information about advantages and disadvantages of different systems and possibilites for improvements, as well as about advantages and disadvantages of applied methods for improvements. We used Arabic–English Newswire and Broadcast News and Chinese–English Newswire outputs created in the framework of the GALE project, several Spanish and English European Parliament outputs generated during the TC-Star project, and three German–English outputs generated in the framework of the fourth Machine Translation Workshop. We show that our results correlate very well with the results of a human error analysis, and that all our metrics except the extra words reflect well the differences between different versions of the same translation system as well as the differences between different translation systems.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance and perception: machine translation post-editing in Chinese-English news translation by novice translators;Humanities and Social Sciences Communications;2023-11-09

2. End-to-End page-Level assessment of handwritten text recognition;Pattern Recognition;2023-10

3. Towards a Digital Assessment: Artificial Intelligence Assisted Error Analysis in ESL;Integrated Journal for Research in Arts and Humanities;2023-07-29

4. Examining Manual and Automatic MT Evaluation: A Grey Relational Analysis for Chinese-Portuguese Translation Quality;2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI);2023-05-26

5. Discover, Explain, Improve: An Automatic Slice Detection Benchmark for Natural Language Processing;Transactions of the Association for Computational Linguistics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3