Extended Poisson Gaussian-Process Latent Variable Model for Unsupervised Neural Decoding

Author:

Luo Della Daiyi1,Giri Bapun2,Diba Kamran3,Kemere Caleb4

Affiliation:

1. Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, U.S.A. dl67@rice.edu

2. Department of Anesthesiology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, U.S.A. bapung@umich.edu

3. Department of Anesthesiology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, U.S.A. kdiba@umich.edu

4. Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, U.S.A. caleb.kemere@rice.edu

Abstract

Abstract Dimension reduction on neural activity paves a way for unsupervised neural decoding by dissociating the measurement of internal neural pattern reactivation from the measurement of external variable tuning. With assumptions only on the smoothness of latent dynamics and of internal tuning curves, the Poisson gaussian-process latent variable model (P-GPLVM; Wu et al., 2017) is a powerful tool to discover the low-dimensional latent structure for high-dimensional spike trains. However, when given novel neural data, the original model lacks a method to infer their latent trajectories in the learned latent space, limiting its ability for estimating the neural reactivation. Here, we extend the P-GPLVM to enable the latent variable inference of new data constrained by previously learned smoothness and mapping information. We also describe a principled approach for the constrained latent variable inference for temporally compressed patterns of activity, such as those found in population burst events during hippocampal sharp-wave ripples, as well as metrics for assessing the validity of neural pattern reactivation and inferring the encoded experience. Applying these approaches to hippocampal ensemble recordings during active maze exploration, we replicate the result that P-GPLVM learns a latent space encoding the animal’s position. We further demonstrate that this latent space can differentiate one maze context from another. By inferring the latent variables of new neural data during running, certain neural patterns are observed to reactivate, in accordance with the similarity of experiences encoded by its nearby neural trajectories in the training data manifold. Finally, reactivation of neural patterns can be estimated for neural activity during population burst events as well, allowing the identification for replay events of versatile behaviors and more general experiences. Thus, our extension of the P-GPLVM framework for unsupervised analysis of neural activity can be used to answer critical questions related to scientific discovery.

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3