Frequency Selectivity Emerging from Spike-Timing-Dependent Plasticity

Author:

Gilson Matthieu1,Bürck Moritz2,Burkitt Anthony N.3,van Hemmen J. Leo2

Affiliation:

1. NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, University of Melbourne, VIC 3010, Australia; The Bionics Institute, East Melbourne, VIC 3002, Australia; NICTA the Victorian Research Lab, University of Melbourne, VIC 3010, Australia; and RIKEN Brain Science Institute, Saitama 351-0198, Japan

2. Physik Department T35, Technische Universitat München, 85748 Garching bei München, Germany, and Bernstein Center for Computational Neuroscience—München, 82152 Martinsried, Germany

3. Neuroengineering Laboratory, Department of Electrical and Electronic Engineering, University of Melbourne, VIC 3010, Australia; The Bionics Institute, East Melbourne, VIC 3010, Australia; and Centre for Neural Engineering, University of Melbourne, VIC 3010, Australia

Abstract

Periodic neuronal activity has been observed in various areas of the brain, from lower sensory to higher cortical levels. Specific frequency components contained in this periodic activity can be identified by a neuronal circuit that behaves as a bandpass filter with given preferred frequency, or best modulation frequency (BMF). For BMFs typically ranging from 10 to 200 Hz, a plausible and minimal configuration consists of a single neuron with adjusted excitatory and inhibitory synaptic connections. The emergence, however, of such a neuronal circuitry is still unclear. In this letter, we demonstrate how spike-timing-dependent plasticity (STDP) can give rise to frequency-dependent learning, thus leading to an input selectivity that enables frequency identification. We use an in-depth mathematical analysis of the learning dynamics in a population of plastic inhibitory connections. These provide inhomogeneous postsynaptic responses that depend on their dendritic location. We find that synaptic delays play a crucial role in organizing the weight specialization induced by STDP. Under suitable conditions on the synaptic delays and postsynaptic potentials (PSPs), the BMF of a neuron after learning can match the training frequency. In particular, proximal (distal) synapses with shorter (longer) dendritic delay and somatically measured PSP time constants respond better to higher (lower) frequencies. As a result, the neuron will respond maximally to any stimulating frequency (in a given range) with which it has been trained in an unsupervised manner. The model predicts that synapses responding to a given BMF form clusters on dendritic branches.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3