Synchrony and Complexity in State-Related EEG Networks: An Application of Spectral Graph Theory

Author:

Ghaderi Amir Hossein1,Baltaretu Bianca R.2,Andevari Masood Nemati3,Bharmauria Vishal2,Balci Fuat4

Affiliation:

1. Centre for Vision Research and Canada Vision: Science to Applications Program, York University, Toronto M3J 1P3, Canada, and Iranian Neuro-Wave Lab., No. 32, Vilashahr, Isfahan, Iran

2. Centre for Vision Research, York University, Toronto M3J 1P3, Canada

3. Department of Physics, Babol Noshirvani University of Technology, Babol, Iran

4. Department of Psychology and Research Center for Translational Medicine, Koç University, Istanbul, Turkey

Abstract

The brain may be considered as a synchronized dynamic network with several coherent dynamical units. However, concerns remain whether synchronizability is a stable state in the brain networks. If so, which index can best reveal the synchronizability in brain networks? To answer these questions, we tested the application of the spectral graph theory and the Shannon entropy as alternative approaches in neuroimaging. We specifically tested the alpha rhythm in the resting-state eye closed (rsEC) and the resting-state eye open (rsEO) conditions, a well-studied classical example of synchrony in neuroimaging EEG. Since the synchronizability of alpha rhythm is more stable during the rsEC than the rsEO, we hypothesized that our suggested spectral graph theory indices (as reliable measures to interpret the synchronizability of brain signals) should exhibit higher values in the rsEC than the rsEO condition. We performed two separate analyses of two different datasets (as elementary and confirmatory studies). Based on the results of both studies and in agreement with our hypothesis, the spectral graph indices revealed higher stability of synchronizability in the rsEC condition. The k-mean analysis indicated that the spectral graph indices can distinguish the rsEC and rsEO conditions by considering the synchronizability of brain networks. We also computed correlations among the spectral indices, the Shannon entropy, and the topological indices of brain networks, as well as random networks. Correlation analysis indicated that although the spectral and the topological properties of random networks are completely independent, these features are significantly correlated with each other in brain networks. Furthermore, we found that complexity in the investigated brain networks is inversely related to the stability of synchronizability. In conclusion, we revealed that the spectral graph theory approach can be reliably applied to study the stability of synchronizability of state-related brain networks.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3