Unsupervised Learning of Temporal Abstractions With Slot-Based Transformers

Author:

Gopalakrishnan Anand123,Irie Kazuki124,Schmidhuber Jürgen1256,van Steenkiste Sjoerd7

Affiliation:

1. The Swiss AI Lab, Lugano 6962, Switzerland

2. USI, Lugano 6900, Switzerland

3. SUPSI, Manno 6928, Switzerland anand@idsia.ch

4. SUPSI, Manno 6928, Switzerland kazuki@idsia.ch

5. SUPSI, Manno 6928, Switzerland

6. AI Initiative, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia juergen@idsia.ch

7. Google Research, Mountain View, CA 94043, U.S.A. svansteenkiste@google.com

Abstract

AbstractThe discovery of reusable subroutines simplifies decision making and planning in complex reinforcement learning problems. Previous approaches propose to learn such temporal abstractions in an unsupervised fashion through observing state-action trajectories gathered from executing a policy. However, a current limitation is that they process each trajectory in an entirely sequential manner, which prevents them from revising earlier decisions about subroutine boundary points in light of new incoming information. In this work, we propose slot-based transformer for temporal abstraction (SloTTAr), a fully parallel approach that integrates sequence processing transformers with a slot attention module to discover subroutines in an unsupervised fashion while leveraging adaptive computation for learning about the number of such subroutines solely based on their empirical distribution. We demonstrate how SloTTAr is capable of outperforming strong baselines in terms of boundary point discovery, even for sequences containing variable amounts of subroutines, while being up to seven times faster to train on existing benchmarks.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference67 articles.

1. OPAL: Offline primitive discovery for accelerating offline reinforcement learning;Ajay,2021

2. Modular multitask reinforcement learning with policy sketches;Andreas,2017

3. The option-critic architecture;Bacon,2017

4. Hierarchical reinforcement learning based on subgoal discovery and subpolicy specialization;Bakker,2004

5. Pondernet: Learning to ponder;Banino,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3