Principal Component Analysis for Gaussian Process Posteriors

Author:

Ishibashi Hideaki1,Akaho Shotaro23

Affiliation:

1. Kyushu Institute of Technology, Kitakyushu 808-0196, Japan ishibashi@brain.kyutech.ac.jp

2. National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan

3. RIKEN AIP, Tokyo 103-0027, Japan s.akaho@aist.go.jp

Abstract

Abstract This letter proposes an extension of principal component analysis for gaussian process (GP) posteriors, denoted by GP-PCA. Since GP-PCA estimates a low-dimensional space of GP posteriors, it can be used for metalearning, a framework for improving the performance of target tasks by estimating a structure of a set of tasks. The issue is how to define a structure of a set of GPs with an infinite-dimensional parameter, such as coordinate system and a divergence. In this study, we reduce the infiniteness of GP to the finite-dimensional case under the information geometrical framework by considering a space of GP posteriors that have the same prior. In addition, we propose an approximation method of GP-PCA based on variational inference and demonstrate the effectiveness of GP-PCA as meta-learning through experiments.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference31 articles.

1. The e-PCA and m-PCA: Dimension reduction of parameters by information geometry;Akaho,2004

2. Computationally efficient convolved multiple output gaussian processes;Álvarez;Journal of Machine Learning Research,2011

3. Information geometry in optimization, machine learning and statistical inference;Amari;Frontiers of Electrical and Electronic Engineering,2010

4. Information Geometry and Its Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3