Affiliation:
1. Department of Computer Science, University of Southern California, Los Angeles, CA 90089, U.S.A.
2. Department of Computer Science and Department of Psychology and Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, U.S.A.
Abstract
This work lays the foundation for a framework of cortical learning based on the idea of a competitive column, which is inspired by the functional organization of neurons in the cortex. A column describes a prototypical organization for neurons that gives rise to an ability to learn scale, rotation, and translation-invariant features. This is empowered by a recently developed learning rule, conflict learning, which enables the network to learn over both driving and modulatory feedforward, feedback, and lateral inputs. The framework is further supported by introducing both a notion of neural ambiguity and an adaptive threshold scheme. Ambiguity, which captures the idea that too many decisions lead to indecision, gives the network a dynamic way to resolve locally ambiguous decisions. The adaptive threshold operates over multiple timescales to regulate neural activity under the varied arrival timings of input in a highly interconnected multilayer network with feedforward and feedback. The competitive column architecture is demonstrated on a large-scale (54,000 neurons and 18 million synapses), invariant model of border ownership. The model is trained on four simple, fixed-scale shapes: two squares, one rectangle, and one symmetric L-shape. Tested on 1899 synthetic shapes of varying scale and complexity, the model correctly assigned border ownership with 74% accuracy. The model's abilities were also illustrated on contours of objects taken from natural images. Combined with conflict learning, the competitive column and ambiguity give a better intuitive understanding of how feedback, modulation, and inhibition may interact in the brain to influence activation and learning.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献