How Does the Inner Retinal Network Shape the Ganglion Cells Receptive Field? A Computational Study

Author:

Kartsaki Evgenia12,Hilgen Gerrit34,Sernagor Evelyne5,Cessac Bruno6

Affiliation:

1. Université Côte d’Azur, Inria, Biovision Team and Neuromod Institute, Sophia Antipolis, France

2. Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K. evgenia.kartsaki@inria.fr

3. Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K.

4. Health and Life Sciences, Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K. gerrit.hilgen@northumbria.ac.uk

5. Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K. evelyne.sernagor@newcastle.ac.uk

6. Université Côte d’Azur, Inria, Biovision Team and Neuromod Institute, Sophia Antipolis, France bruno.cessac@inria.fr

Abstract

Abstract We consider a model of basic inner retinal connectivity where bipolar and amacrine cells interconnect and both cell types project onto ganglion cells, modulating their response output to the brain visual areas. We derive an analytical formula for the spatiotemporal response of retinal ganglion cells to stimuli, taking into account the effects of amacrine cells inhibition. This analysis reveals two important functional parameters of the network: (1) the intensity of the interactions between bipolar and amacrine cells and (2) the characteristic timescale of these responses. Both parameters have a profound combined impact on the spatiotemporal features of retinal ganglion cells’ responses to light. The validity of the model is confirmed by faithfully reproducing pharmacogenetic experimental results obtained by stimulating excitatory DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) expressed on ganglion cells and amacrine cells’ subclasses, thereby modifying the inner retinal network activity to visual stimuli in a complex, entangled manner. Our mathematical model allows us to explore and decipher these complex effects in a manner that would not be feasible experimentally and provides novel insights in retinal dynamics.

Publisher

MIT Press

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3