A Noise-Based Novel Strategy for Faster SNN Training

Author:

Jiang Chunming1,Zhang Yilei2

Affiliation:

1. Department of Mechanical Engineering, University of Canterbury, Canterbury CT2 7NX, New Zealand cji39@uclive.ac.nz

2. Department of Mechanical Engineering, University of Canterbury, Canterbury CT2 7NX, New Zealand yilei.zhang@canterbury.ac.nz

Abstract

Abstract Spiking neural networks (SNNs) are receiving increasing attention due to their low power consumption and strong bioplausibility. Optimization of SNNs is a challenging task. Two main methods, artificial neural network (ANN)-to-SNN conversion and spike-based backpropagation (BP), both have advantages and limitations. ANN-to-SNN conversion requires a long inference time to approximate the accuracy of ANN, thus diminishing the benefits of SNN. With spike-based BP, training high-precision SNNs typically consumes dozens of times more computational resources and time than their ANN counterparts. In this letter, we propose a novel SNN training approach that combines the benefits of the two methods. We first train a single-step SNN(T = 1) by approximating the neural potential distribution with random noise, then convert the single-step SNN(T = 1) to a multistep SNN(T = N) losslessly. The introduction of gaussian distributed noise leads to a significant gain in accuracy after conversion. The results show that our method considerably reduces the training and inference times of SNNs while maintaining their high accuracy. Compared to the previous two methods, ours can reduce training time by 65% to 75% and achieves more than 100 times faster inference speed. We also argue that the neuron model augmented with noise makes it more bioplausible.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3